Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Gen Virol ; 105(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180085

RESUMO

Host tissues represent diverse resources or barriers for pathogen replicative fitness. We tested whether viruses in specialist, generalist, and non-specialist interactions replicate differently in local entry tissue (fin), and systemic target tissue (kidney) using infectious hematopoietic necrosis virus (IHNV) and three salmonid fish hosts. Virus tissue replication was host specific, but one feature was shared by specialists and the generalist which was uncommon in the non-specialist interactions: high host entry and replication capacity in the local tissue after contact. Moreover, specialists showed increased replication in systemic target tissues early after host contact. By comparing ancestral and derived IHNV viruses, we also characterized replication tradeoffs associated with specialist and generalist evolution. Compared with the ancestral virus, a derived specialist gained early local replicative fitness in the new host but lost replicative fitness in the ancestral host. By contrast, a derived generalist showed small replication losses relative to the ancestral virus in the ancestral host but increased early replication in the local tissue of novel hosts. This study shows that the mechanisms of specialism and generalism are host specific and that local and systemic replication can contribute differently to overall within host replicative fitness for specialist and generalist viruses.


Assuntos
Salmonidae , Animais , Especialização , Rim , Replicação Viral
2.
Virus Evol ; 8(2): veac079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36101884

RESUMO

Theory of the evolution of pathogen specialization suggests that a specialist pathogen gains high fitness in one host, but this comes with fitness loss in other hosts. By contrast, a generalist pathogen does not achieve high fitness in any host, but gains ecological fitness by exploiting different hosts, and has higher fitness than specialists in nonspecialized hosts. As a result, specialist pathogens are predicted to have greater variation in fitness across hosts, and generalists would have lower fitness variation across hosts. We test these hypotheses by measuring pathogen replicative fitness as within-host viral loads from the onset of infection to the beginning of virus clearance, using the rhabdovirus infectious hematopoietic necrosis virus (IHNV) in salmonid fish. Based on field prevalence and virulence studies, the IHNV subgroups UP, MD, and L are specialists, causing infection and mortality in sockeye salmon, steelhead, and Chinook salmon juveniles, respectively. The UC subgroup evolved naturally from a UP ancestor and is a generalist infecting all three host species but without causing severe disease. We show that the specialist subgroups had the highest peak and mean viral loads in the hosts in which they are specialized, and they had low viral loads in nonspecialized hosts, resulting in large variation in viral load across hosts. Viral kinetics show that the mechanisms of specialization involve the ability to both maximize early virus replication and avoid clearance at later times, with different mechanisms of specialization evident in different host-virus combinations. Additional nuances in the data included different fitness levels for nonspecialist interactions, reflecting different trade-offs for specialist viruses in other hosts. The generalist UC subgroup reached intermediate viral loads in all hosts and showed the smallest variation in fitness across hosts. The evolution of the UC generalist from an ancestral UP sockeye specialist was associated with fitness increases in steelhead and Chinook salmon, but only slight decreases in fitness in sockeye salmon, consistent with low- or no-cost generalism. Our results support major elements of the specialist-generalist theory, providing evidence of a specialist-generalist continuum in a vertebrate pathogen. These results also quantify within-host replicative fitness trade-offs resulting from the natural evolution of specialist and generalist virus lineages in multi-host ecosystems.

3.
Dis Aquat Organ ; 151: 1-9, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36047669

RESUMO

Nuclear inclusion X (NIX), the etiological agent of bacterial gill disease in Pacific razor clams Siliqua patula, was associated with host mortality events in coastal Washington State, USA, during the mid-1980s. Ongoing observations of truncated razor clam size distributions in Kalaloch Beach, Washington, raised concerns that NIX continues to impact populations. We conducted a series of spatial and longitudinal NIX surveillances, examined archived razor clam gill tissue, and used population estimates from stock assessments to test whether (1) the prevalence and intensity of NIX infections is higher at Kalaloch Beach relative to nearby beaches, (2) infected gill tissue has features consistent with historical descriptions of NIX-associated histopathology, and (3) annual clam survival is inversely related to NIX infection prevalence and intensity. NIX prevalence exceeded 85% at all sampled locations, and infection intensity was the highest at Kalaloch Beach by 0.9-2.6 orders of magnitude. Kalaloch Beach clams revealed histopathology consistent with previous NIX epidemics, including enlarged and/or rupturing branchial epithelial cells, branchial necrosis, and high hemocyte densities. Estimated annual survival was 22% at Kalaloch Beach, and ranged between 57 and 99% at other study sites. NIX infection intensity (via quantitative PCR) was not significantly correlated with annual survival; however, annual survival was lowest at Kalaloch Beach, where infection intensities were highest, suggesting that clams can tolerate infections up to a lethal threshold. Collectively these data support the hypothesis that high NIX intensities are associated with host mortality. NIX-associated mortality appears to be more pronounced at Kalaloch Beach relative to other Washington beaches.


Assuntos
Bivalves , Corpos de Inclusão Intranuclear , Animais , Brânquias , Washington/epidemiologia
4.
Dis Aquat Organ ; 150: 61-67, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35833545

RESUMO

In recent decades, evidence has accumulated to suggest that the widespread and highly variable parasite Ichthyophonus hoferi is actually a species complex. Highly plastic morphology and a general lack of defining structures has contributed to the likely underestimate of biodiversity within this group. Molecular methods are a logical next step in the description of these parasites, but markers used to date have been too conserved to resolve species boundaries. Here we use mitochondrial encoded cytochrome-c oxidase (MTCO1) gene sequences and phylogenic analysis to compare Ichthyophonus spp. isolates from several marine and anadromous fish hosts. The resulting phylogeny displays lineage separation among isolates and possible host/niche segregation not previously described. The parasite type that infects Pacific herring Clupea pallasii, Atlantic herring C. harengus, Atlantic salmon Salmo salar, and Pacific staghorn sculpin Oligocottus maculosus (Clade A) is different from that which infects Chinook salmon Oncorhynchus tshawytscha, walleye pollock Gadus chalcogrammus, Greenland halibut Reinhardtius hippoglossoides, and Pacific halibut Hippoglossus stenolepsis (Clade B). MTCO1 sequences confirmed the presence of a more divergent Ichthyophonus sp. isolated from American shad Alosa sapidissima in rivers of eastern North America (Clade C), while American shad introduced to the Pacific Ocean are infected with the same parasite that infects Pacific herring (Clade A). Currently there are no consensus criteria for delimiting species within Ichthyophonidae, but MTCO1 sequences hold promise as a potential species identifying marker and useful epizootiological tool.


Assuntos
Doenças dos Peixes , Gadiformes , Mesomycetozoea , Animais , Complexo IV da Cadeia de Transporte de Elétrons/genética , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , Peixes , Genótipo , Mesomycetozoea/genética , Oceano Pacífico , Filogenia , Salmão
5.
Animals (Basel) ; 12(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35883308

RESUMO

Infectious hematopoietic necrosis virus (IHNV) is an acute pathogen of salmonids in North America, Europe, and Asia that is phylogenetically classified into five major virus genogroups (U, M, L, E, and J). The geographic range of the U and M genogroup isolates overlap in the North American Columbia River Basin and Washington Coast region, where these genogroups pose different risks depending on the species of Pacific salmon (Oncorhynchus spp.). For certain management decisions, there is a need to both test for IHNV presence and rapidly determine the genogroup. Herein, we report the development and validation of a U/M multiplex reverse transcription, real-time PCR (RT-rPCR) assay targeting the IHNV nucleocapsid (N) protein gene. The new U/M RT-rPCR is a rapid, sensitive, and repeatable assay capable of specifically discriminating between North American U and M genogroup IHNV isolates. However, one M genogroup isolate obtained from commercially cultured Idaho rainbow trout (O. mykiss) showed reduced sensitivity with the RT-rPCR test, suggesting caution may be warranted before applying RT-rPCR as the sole surveillance test in areas associated with the Idaho trout industry. The new U/M assay had high diagnostic sensitivity (DSe > 94%) and specificity (DSp > 97%) in free-ranging adult Pacific salmon, when assessed relative to cell culture, the widely accepted reference standard, as well as the previously validated universal N RT-rPCR test. The high diagnostic performance of the new U/M assay indicates the test is suitable for surveillance, diagnosis, and confirmation of IHNV in Pacific salmon from the Pacific Northwest regions where the U and M genogroups overlap.

6.
Infect Immun ; 89(11): e0022021, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34424748

RESUMO

Several Francisella spp., including Francisella noatunensis, are regarded as important emerging pathogens of wild and farmed fish. However, very few studies have investigated the virulence factors that allow these bacterial species to be pathogenic in fish. The Francisella pathogenicity island (FPI) is a well-described, gene-dense region encoding major virulence factors for the genus Francisella. pdpA is a member of the pathogenicity-determining protein genes carried by the FPI that are implicated in the ability of the mammalian pathogen Francisella tularensis to escape and replicate in infected host cells. Using a sacB suicide approach, we generated pdpA knockouts to address the role of PdpA as a virulence factor for F. noatunensis. Because polarity can be an issue in gene-dense regions, we generated two different marker-based mutants in opposing polarity (the F. noatunensis subsp. orientalis ΔpdpA1 and ΔpdpA2 strains). Both mutants were attenuated (P < 0.0001) in zebrafish challenges and displayed impaired intracellular replication (P < 0.05) and cytotoxicity (P < 0.05), all of which could be restored to wild-type (WT) levels by complementation for the ΔpdpA1 mutant. Importantly, differences were found for bacterial burden and induction of acute-phase and proinflammatory genes for the F. noatunensis subsp. orientalis ΔpdpA1 and ΔpdpA2 mutants compared to the WT during acute infection. In addition, neither mutant resulted in significant histopathological changes. Finally, immunization with the F. noatunensis subsp. orientalis ΔpdpA1 mutant led to protection (P < 0.012) against an acute 40% lethal dose (LD40) challenge with WT F. noatunensis in the zebrafish model of infection. Taken together, the results from this study further demonstrate physiological similarities within the genus Francisella relative to their phylogenetic relationships and the utility of zebrafish for addressing virulence factors for the genus.


Assuntos
Francisella/patogenicidade , Ilhas Genômicas , Peixe-Zebra/microbiologia , Animais , Proteínas de Bactérias/genética , Doenças dos Peixes/microbiologia , Virulência
7.
Pathogens ; 10(7)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34358005

RESUMO

Environmental variation has important effects on host-pathogen interactions, affecting large-scale ecological processes such as the severity and frequency of epidemics. However, less is known about how the environment interacts with host immunity to modulate virus fitness within hosts. Here, we studied the interaction between host immune responses and water temperature on the long-term persistence of a model vertebrate virus, infectious hematopoietic necrosis virus (IHNV) in steelhead trout (Oncorhynchus mykiss). We first used cell culture methods to factor out strong host immune responses, allowing us to test the effect of temperature on viral replication. We found that 15 ∘C water temperature accelerated IHNV replication compared to the colder 10 and 8 ∘C temperatures. We then conducted in vivo experiments to quantify the effect of 6, 10, and 15 ∘C water temperatures on IHNV persistence over 8 months. Fish held at 15 and 10 ∘C were found to have higher prevalence of neutralizing antibodies compared to fish held at 6 ∘C. We found that IHNV persisted for a shorter time at warmer temperatures and resulted in an overall lower fish mortality compared to colder temperatures. These results support the hypothesis that temperature and host immune responses interact to modulate virus persistence within hosts. When immune responses were minimized (i.e., in vitro) virus replication was higher at warmer temperatures. However, with a full potential for host immune responses (i.e., in vivo experiments) longer virus persistence and higher long-term virulence was favored in colder temperatures. We also found that the viral RNA that persisted at later time points (179 and 270 days post-exposure) was mostly localized in the kidney and spleen tissues. These tissues are composed of hematopoietic cells that are favored targets of the virus. By partitioning the effect of temperature on host and pathogen responses, our results help to better understand environmental drivers of host-pathogen interactions within hosts, providing insights into potential host-pathogen responses to climate change.

8.
Dis Aquat Organ ; 144: 123-131, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33955850

RESUMO

Preliminary evidence suggests that Chinook salmon Oncorhynchus tshawytscha from the Yukon River may be more susceptible to Ichthyophonus sp. infections than Chinook from stocks further south. To investigate this hypothesis in a controlled environment, we experimentally challenged juvenile Chinook from the Yukon River and from the Salish Sea with Ichthyophonus sp. and evaluated mortality, infection prevalence and infection load over time. We found that juvenile Chinook salmon from a Yukon River stock were more susceptible to ichthyophoniasis than were those from a Salish Sea stock. After feeding with tissues from infected Pacific herring Clupea pallasii, Chinook salmon from both stocks became infected. The infection was persistent and progressive in Yukon River stock fish, where infections sometimes progressed to mortality, and histological examinations revealed parasite dissemination and proliferation throughout the host tissues. In Salish Sea-origin fish, however, infections were largely transient; host mortalities were rare, and parasite stages were largely cleared from most tissues after 3-4 wk. Susceptibility differences were evidenced by greater cumulative mortality, infection prevalence, parasite density, proportion of fish demonstrating a cellular response, and intensity of the cellular response among fish from the Yukon River stock. These observed differences between Chinook salmon stocks were consistent when parasite exposures occurred in both freshwater and seawater. These results support the hypothesis that a longer-standing host-pathogen relationship, resulting in decreased disease susceptibility, exists among Salish Sea Chinook salmon than among Yukon River conspecifics.


Assuntos
Doenças dos Peixes , Mesomycetozoea , Animais , Doenças dos Peixes/epidemiologia , Rios , Salmão , Yukon
9.
J Invertebr Pathol ; 178: 107519, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33333062

RESUMO

Nuclear inclusion X (NIX) is a gamma proteobacteria that infects the nuclei of gill epithelial cells in Pacific razor clams. NIX has been associated with clam die-offs in coastal Washington. A quantitative PCR (qPCR) assay was developed to detect NIX in Pacific razor clams, and assay specificity was confirmed by chromogenic in situ hybridization (CISH). Both tests were applied to evaluate NIX infections in wild Pacific razor clams collected during spring 2019. Consistent with results from earlier histopathological assessments, qPCR and CISH indicated 100% prevalence in razor clams from two Washington beaches and 0% prevalence from two Alaskan beaches.


Assuntos
Bivalves/microbiologia , Testes Diagnósticos de Rotina/métodos , Proteobactérias/isolamento & purificação , Animais , Infecções Bacterianas/epidemiologia , Brânquias , Hibridização In Situ , Corpos de Inclusão Intranuclear/microbiologia , Prevalência , Reação em Cadeia da Polimerase em Tempo Real , Washington/epidemiologia
10.
J Fish Dis ; 43(7): 719-728, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32476167

RESUMO

Piscine orthoreovirus genotype 1 (PRV-1) is the causative agent of heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar L.). The virus has also been found in Pacific salmonids in western North America, raising concerns about the risk to native salmon and trout. Here, we report the results of laboratory challenges using juvenile Chinook salmon, coho salmon and rainbow trout injected with tissue homogenates from Atlantic salmon testing positive for PRV-1 or with control material. Fish were sampled at intervals to assess viral RNA transcript levels, haematocrit, erythrocytic inclusions and histopathology. While PRV-1 replicated in all species, there was negligible mortality in any group. We observed a few erythrocytic inclusion bodies in fish from the PRV-1-infected groups. At a few time points, haematocrits were significantly lower in the PRV-1-infected groups relative to controls, but in no case was anaemia noted. The most common histopathological finding was mild, focal myocarditis in both the non-infected controls and PRV-1-infected fish. All cardiac lesions were judged mild, and none were consistent with those of HSMI. Together, these results suggest all three species are susceptible to PRV-1 infection, but in no case did infection cause notable disease in these experiments.


Assuntos
Doenças dos Peixes/virologia , Genótipo , Hematócrito/veterinária , Corpos de Inclusão Viral/fisiologia , Oncorhynchus , Orthoreovirus/fisiologia , Infecções por Reoviridae/veterinária , Animais , Oncorhynchus kisutch , Oncorhynchus mykiss , Orthoreovirus/genética , RNA Viral/análise , Infecções por Reoviridae/virologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-30863823

RESUMO

We report here the genome sequences of two index strains of Pacific salmon paramyxovirus isolated in 1982 and 1983 from adult salmon in Oregon. The isolates are most closely related to Atlantic salmon paramyxovirus, the type species of the genus Aquaparamyxovirus, but are sufficiently distinct to be considered two genotypes of a novel species.

12.
Virology ; 525: 143-149, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30278384

RESUMO

The aquaculture industry is growing rapidly to meet the needs for global protein consumption. Viral diseases in aquaculture are quite challenging due to lack of treatment options as well as limited injection-delivery vaccines, which are costly. Thus, water-immersion antiviral treatments are highly desirable. This study focused on broad-spectrum, light-activated antivirals that target the viral membrane (envelope) of viruses to prevent viral-cell membrane fusion, ultimately blocking viral entry into cells. Of the tested small-molecules, JL122, a new broad-spectrum antiviral previously unexplored against aquatic viruses, blocked infection of three aquatic rhabdoviruses (IHNV, VHSV and SVCV) in cell culture and in two live fish challenge models. Importantly, JL122 inhibited transmission of IHNV from infected to uninfected rainbow trout. Further, the effective antiviral concentrations were not toxic to cells or susceptible fish. These results show promise for JL122 to become an immersion treatment option for outbreaks of aquatic enveloped viral infections.


Assuntos
Antivirais/uso terapêutico , Doenças dos Peixes/virologia , Vírus da Necrose Hematopoética Infecciosa , Novirhabdovirus , Oncorhynchus mykiss , Infecções por Rhabdoviridae/veterinária , Animais , Antivirais/classificação , Linhagem Celular Tumoral , Doenças dos Peixes/tratamento farmacológico , Estrutura Molecular , Infecções por Rhabdoviridae/prevenção & controle , Infecções por Rhabdoviridae/virologia , Relação Estrutura-Atividade
13.
Ecol Evol ; 7(20): 8187-8200, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29075442

RESUMO

This is the first comprehensive region wide, spatially explicit epidemiologic analysis of surveillance data of the aquatic viral pathogen infectious hematopoietic necrosis virus (IHNV) infecting native salmonid fish. The pathogen has been documented in the freshwater ecosystem of the Pacific Northwest of North America since the 1950s, and the current report describes the disease ecology of IHNV during 2000-2012. Prevalence of IHNV infection in monitored salmonid host cohorts ranged from 8% to 30%, with the highest levels observed in juvenile steelhead trout. The spatial distribution of all IHNV-infected cohorts was concentrated in two sub-regions of the study area, where historic burden of the viral disease has been high. During the study period, prevalence levels fluctuated with a temporal peak in 2002. Virologic and genetic surveillance data were analyzed for evidence of three separate but not mutually exclusive transmission routes hypothesized to be maintaining IHNV in the freshwater ecosystem. Transmission between year classes of juvenile fish at individual sites (route 1) was supported at varying levels of certainty in 10%-55% of candidate cases, transmission between neighboring juvenile cohorts (route 2) was supported in 31%-78% of candidate cases, and transmission from adult fish returning to the same site as an infected juvenile cohort was supported in 26%-74% of candidate cases. The results of this study indicate that multiple specific transmission routes are acting to maintain IHNV in juvenile fish, providing concrete evidence that can be used to improve resource management. Furthermore, these results demonstrate that more sophisticated analysis of available spatio-temporal and genetic data is likely to yield greater insight in future studies.

14.
J Aquat Anim Health ; 29(4): 189-198, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28806149

RESUMO

We report the development and validation of two quantitative PCR (qPCR) assays to detect Nanophyetus salmincola DNA in water samples and in fish and snail tissues. Analytical and diagnostic validation demonstrated good sensitivity, specificity, and repeatability of both qPCR assays. The N. salmincola DNA copy number in kidney tissue was significantly correlated with metacercaria counts based on microscopy. Extraction methods were optimized for the sensitive qPCR detection of N. salmincola DNA in settled water samples. Artificially spiked samples suggested that the 1-cercaria/L threshold corresponded to an estimated log10 copies per liter ≥ 6.0. Significant correlation of DNA copy number per liter and microscopic counts indicated that the estimated qPCR copy number was a good predictor of the number of waterborne cercariae. However, the detection of real-world samples below the estimated 1-cercaria/L threshold suggests that the assays may also detect other N. salmincola life stages, nonintact cercariae, or free DNA that settles with the debris. In summary, the qPCR assays reported here are suitable for identifying and quantifying all life stages of N. salmincola that occur in fish tissues, snail tissues, and water. Received April 13, 2017; accepted August 6, 2017.


Assuntos
Peixes/parasitologia , Caramujos/parasitologia , Trematódeos/isolamento & purificação , Água/parasitologia , Animais , Reação em Cadeia da Polimerase , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , Trematódeos/genética
15.
J Aquat Anim Health ; 29(3): 121-128, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28696830

RESUMO

Homologous and heterologous (genogroup Ia) DNA vaccines against viral hemorrhagic septicemia virus (genogroup IVa) conferred partial protection in Pacific Herring Clupea pallasii. Early protection at 2 weeks postvaccination (PV) was low and occurred only at an elevated temperature (12.6°C, 189 degree days), where the relative percent survival following viral exposure was similar for the two vaccines (IVa and Ia) and higher than that of negative controls at the same temperature. Late protection at 10 weeks PV was induced by both vaccines but was higher with the homologous vaccine at both 9.0°C and 12.6°C. Virus neutralization titers were detected among 55% of all vaccinated fish at 10 weeks PV. The results suggest that the immune response profile triggered by DNA vaccination of herring was similar to that reported for Rainbow Trout Oncorhynchus mykiss by Lorenzen and LaPatra in 2005, who found interferon responses in the early days PV and the transition to adaptive response later. However, the protective effect was far less prominent in herring, possibly reflecting different physiologies or adaptations of the two fish species. Received August 1, 2016; accepted March 10, 2017.


Assuntos
Doenças dos Peixes/prevenção & controle , Septicemia Hemorrágica Viral/prevenção & controle , Novirhabdovirus/imunologia , Temperatura , Vacinas de DNA/administração & dosagem , Animais , Doenças dos Peixes/imunologia , Septicemia Hemorrágica Viral/imunologia , Oncorhynchus mykiss , Vacinas Virais
16.
J Aquat Anim Health ; 29(2): 74-82, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28375717

RESUMO

Methods for a plaque neutralization test (PNT) were optimized for the detection and quantification of viral hemorrhagic septicemia virus (VHSV) neutralizing activity in the plasma of Pacific Herring Clupea pallasii. The PNT was complement dependent, as neutralizing activity was attenuated by heat inactivation; further, neutralizing activity was mostly restored by the addition of exogenous complement from specific-pathogen-free Pacific Herring. Optimal methods included the overnight incubation of VHSV aliquots in serial dilutions (starting at 1:16) of whole test plasma containing endogenous complement. The resulting viral titers were then enumerated using a viral plaque assay in 96-well microplates. Serum neutralizing activity was virus-specific as plasma from viral hemorrhagic septicemia (VHS) survivors demonstrated only negligible reactivity to infectious hematopoietic necrosis virus, a closely related rhabdovirus. Among Pacific Herring that survived VHSV exposure, neutralizing activity was detected in the plasma as early as 37 d postexposure and peaked at approximately 64 d postexposure. The onset of neutralizing activity was slightly delayed in fish reared at 7.4°C relative to those in warmer temperatures (9.9°C and 13.1°C); however, neutralizing activity persisted for at least 345 d postexposure in all temperature treatments. It is anticipated that this novel ability to assess VHSV neutralizing activity in Pacific Herring will enable retrospective comparisons between prior VHS infections and year-class recruitment failures. Additionally, the optimized PNT could be employed as a forecasting tool capable of identifying the potential for future VHS epizootics in wild Pacific Herring populations. Received November 7, 2016; accepted January 14, 2017.


Assuntos
Doenças dos Peixes/diagnóstico , Septicemia Hemorrágica Viral/diagnóstico , Testes de Neutralização/veterinária , Novirhabdovirus/isolamento & purificação , Animais , Peixes , Estudos Retrospectivos
17.
J Virol Methods ; 245: 73-80, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28347708

RESUMO

Infectious hematopoietic necrosis virus (IHNV) is an important pathogen of salmonid fishes. A validated universal reverse transcriptase quantitative PCR (RT-qPCR) assay that can quantify levels of IHNV in fish tissues has been previously reported. In the present study, we adapted the published set of IHNV primers and probe for use in a reverse-transcriptase droplet digital PCR (RT-ddPCR) assay for quantification of the virus in fish tissue samples. The RT-ddPCR and RT-qPCR assays detected 13 phylogenetically diverse IHNV strains, but neither assay produced detectable amplification when RNA from other fish viruses was used. The RT-ddPCR assay had a limit of detection (LOD) equating to 2.2 plaque forming units (PFU)/µl while the LOD for the RT-qPCR was 0.2 PFU/µl. Good agreement (69.4-100%) between assays was observed when used to detect IHNV RNA in cell culture supernatant and tissues from IHNV infected rainbow trout (Oncorhynchus mykiss) and arctic char (Salvelinus alpinus). Estimates of RNA copy number produced by the two assays were significantly correlated but the RT-qPCR consistently produced higher estimates than the RT-ddPCR. The analytical properties of the N gene RT-ddPCR test indicated that this method may be useful to assess IHNV RNA copy number for research and diagnostic purposes. Future work is needed to establish the within and between laboratory diagnostic performance of the RT-ddPCR assay.


Assuntos
Vírus da Necrose Hematopoética Infecciosa/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Infecções por Rhabdoviridae/veterinária , Animais , Primers do DNA , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/virologia , Vírus da Necrose Hematopoética Infecciosa/genética , RNA Viral/isolamento & purificação , DNA Polimerase Dirigida por RNA , Infecções por Rhabdoviridae/diagnóstico , Infecções por Rhabdoviridae/virologia , Sensibilidade e Especificidade , Proteínas do Envelope Viral/genética , Carga Viral
18.
Virus Res ; 230: 38-49, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28088362

RESUMO

A novel virus, rainbow trout orthomyxovirus (RbtOV), was isolated in 1997 and again in 2000 from commercially-reared rainbow trout (Oncorhynchus mykiss) in Idaho, USA. The virus grew optimally in the CHSE-214 cell line at 15°C producing a diffuse cytopathic effect; however, juvenile rainbow trout exposed to cell culture-grown virus showed no mortality or gross pathology. Electron microscopy of preparations from infected cell cultures revealed the presence of typical orthomyxovirus particles. The complete genome of RbtOV is comprised of eight linear segments of single-stranded, negative-sense RNA having highly conserved 5' and 3'-terminal nucleotide sequences. Another virus isolated in 2014 from steelhead trout (also O. mykiss) in Wisconsin, USA, and designated SttOV was found to have eight genome segments with high amino acid sequence identities (89-99%) to the corresponding genes of RbtOV, suggesting these new viruses are isolates of the same virus species and may be more widespread than currently realized. The new isolates had the same genome segment order and the closest pairwise amino acid sequence identities of 16-42% with Infectious salmon anemia virus (ISAV), the type species and currently only member of the genus Isavirus in the family Orthomyxoviridae. However, pairwise comparisons of the predicted amino acid sequences of the 10 RbtOV and SttOV proteins with orthologs from representatives of the established orthomyxoviral genera and a phylogenetic analysis using the PB1 protein showed that while RbtOV and SttOV clustered most closely with ISAV, they diverged sufficiently to merit consideration as representatives of a novel genus. A set of PCR primers was designed using conserved regions of the PB1 gene to produce amplicons that may be sequenced for identification of similar fish orthomyxoviruses in the future.


Assuntos
Doenças dos Peixes/virologia , Genoma Viral , Oncorhynchus mykiss/virologia , Infecções por Orthomyxoviridae/veterinária , Orthomyxoviridae/genética , RNA Viral/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Especiação Genética , Isavirus/classificação , Isavirus/genética , Orthomyxoviridae/classificação , Infecções por Orthomyxoviridae/virologia , Filogenia , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico
19.
J Virol ; 91(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27903801

RESUMO

Many enveloped viruses cause devastating disease in aquaculture, resulting in significant economic impact. LJ001 is a broad-spectrum antiviral compound that inhibits enveloped virus infections by specifically targeting phospholipids in the lipid bilayer via the production of singlet oxygen (1O2). This stabilizes positive curvature and decreases membrane fluidity, which inhibits virus-cell membrane fusion during viral entry. Based on data from previous mammalian studies and the requirement of light for the activation of LJ001, we hypothesized that LJ001 may be useful as a preventative and/or therapeutic agent for infections by enveloped viruses in aquaculture. Here, we report that LJ001 was more stable with a prolonged inhibitory half-life at relevant aquaculture temperatures (15°C), than in mammalian studies at 37°C. When LJ001 was preincubated with our model virus, infectious hematopoietic necrosis virus (IHNV), infectivity was significantly inhibited in vitro (using the epithelioma papulosum cyprini [EPC] fish cell line) and in vivo (using rainbow trout fry) in a dose-dependent and time-dependent manner. While horizontal transmission of IHNV in a static cohabitation challenge model was reduced by LJ001, transmission was not completely blocked at established antiviral doses. Therefore, LJ001 may be best suited as a therapeutic for aquaculture settings that include viral infections with lower virus-shedding rates than IHNV or where higher viral titers are required to initiate infection of naive fish. Importantly, our data also suggest that LJ001-inactivated IHNV elicited an innate immune response in the rainbow trout host, making LJ001 potentially useful for future vaccination approaches. IMPORTANCE: Viral diseases in aquaculture are challenging because there are few preventative measures and/or treatments. Broad-spectrum antivirals are highly sought after and studied because they target common components of viruses. In our studies, we used LJ001, a broad-spectrum antiviral compound that specifically inhibits enveloped viruses. We used the fish rhabdovirus infectious hematopoietic necrosis virus (IHNV) as a model to study aquatic enveloped virus diseases and their inhibition. We demonstrated inhibition of IHNV by LJ001 both in cell culture as well as in live fish. Additionally, we showed that LJ001 inhibited the transmission of IHNV from infected fish to healthy fish, which lays the groundwork for using LJ001 as a possible therapeutic for aquatic viruses. Our results also suggest that virus inactivated by LJ001 induces an immune response, showing potential for future preventative (e.g., vaccine) applications.


Assuntos
Antivirais/farmacologia , Doenças dos Peixes/virologia , Infecções por Rhabdoviridae/virologia , Rhabdoviridae/efeitos dos fármacos , Animais , Aquicultura , Relação Dose-Resposta a Droga , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/genética , Doenças dos Peixes/transmissão , Regulação da Expressão Gênica/efeitos dos fármacos , Infecções por Rhabdoviridae/tratamento farmacológico , Infecções por Rhabdoviridae/genética , Infecções por Rhabdoviridae/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...